高三数学函数知识点归纳总结版

时间:2023-10-29 23:33:20
高三数学函数知识点归纳总结(2017版)

高三数学函数知识点归纳总结(2017版)

  导语:一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。下面是小编为大家整理的,数学知识,更多相关信息请关注CNFLA相关栏目!

  一、一次函数定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx(k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b(k为任意不为零的实数b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图 ……此处隐藏3452个字……(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义

  2.奇偶函数图像的特征:

  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)→(-x,-y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

  3.奇偶函数运算

  (1).两个偶函数相加所得的和为偶函数.

  (2).两个奇函数相加所得的和为奇函数.

  (3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

  (4).两个偶函数相乘所得的积为偶函数.

  (5).两个奇函数相乘所得的积为偶函数.

  (6).一个偶函数与一个奇函数相乘所得的积为奇函数.

《高三数学函数知识点归纳总结(2017版).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式